500kV变压器电磁特性.srt 5.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320
  1. 1
  2. 00:00:00,000 --> 00:00:02,920
  3. 变压器是电力系统中的关键设备
  4. 2
  5. 00:00:02,920 --> 00:00:06,106
  6. 广泛应用于电压变换和远距离输电
  7. 3
  8. 00:00:06,107 --> 00:00:08,887
  9. 它的工作原理基于电磁感应定律
  10. 4
  11. 00:00:08,887 --> 00:00:10,077
  12. 结构虽复杂
  13. 5
  14. 00:00:10,077 --> 00:00:11,987
  15. 基本原理却较直观
  16. 6
  17. 00:00:11,987 --> 00:00:14,747
  18. 我们可以从一个简单实验开始理解:
  19. 7
  20. 00:00:14,747 --> 00:00:17,933
  21. 当一块磁铁在一组线圈旁来回移动时
  22. 8
  23. 00:00:17,933 --> 00:00:19,643
  24. 磁通量发生变化
  25. 9
  26. 00:00:19,643 --> 00:00:21,443
  27. 线圈切割磁通线
  28. 10
  29. 00:00:21,443 --> 00:00:23,303
  30. 从而产生感应电流
  31. 11
  32. 00:00:23,303 --> 00:00:25,373
  33. 这就是电磁感应现象
  34. 12
  35. 00:00:25,074 --> 00:00:28,494
  36. 如果将磁铁换成一组接通直流电的线圈
  37. 13
  38. 00:00:28,494 --> 00:00:29,214
  39. 根据安培定律
  40. 14
  41. 00:00:29,214 --> 00:00:32,960
  42. 通电的线圈也会产生一个与磁铁相似的磁场
  43. 15
  44. 00:00:32,961 --> 00:00:35,481
  45. 若接入的是交流电源
  46. 16
  47. 00:00:35,481 --> 00:00:37,571
  48. 由于电流方向不断变化
  49. 17
  50. 00:00:37,571 --> 00:00:40,021
  51. 磁场方向也会周期性反转
  52. 18
  53. 00:00:40,021 --> 00:00:43,081
  54. 临近的线圈就会被动的切割磁通线
  55. 19
  56. 00:00:43,081 --> 00:00:44,541
  57. 从而生成感应电流
  58. 20
  59. 00:00:44,541 --> 00:00:47,274
  60. 实现非接触式能量传递
  61. 21
  62. 00:00:47,274 --> 00:00:48,661
  63. 即隔空输电
  64. 22
  65. 00:00:48,661 --> 00:00:51,921
  66. 但因多数磁通线未被利用 传输效率较低
  67. 23
  68. 00:00:51,921 --> 00:00:56,627
  69. 我们引入一个高磁导率铁芯 并在两端分别缠绕线圈
  70. 24
  71. 00:00:56,628 --> 00:00:58,728
  72. 铁芯提供低磁阻路径
  73. 25
  74. 00:00:58,728 --> 00:01:01,418
  75. 使磁场集中在铁芯内部传播
  76. 26
  77. 00:01:01,418 --> 00:01:03,748
  78. 从而达到集中磁通的效果
  79. 27
  80. 00:01:03,748 --> 00:01:05,068
  81. 在这种结构中
  82. 28
  83. 00:01:05,068 --> 00:01:07,768
  84. 连接电源的一侧称为初级线圈
  85. 29
  86. 00:01:07,768 --> 00:01:10,428
  87. 输出电流的一侧为次级线圈
  88. 30
  89. 00:01:10,428 --> 00:01:15,268
  90. 根据法拉第电磁感应定律 感应电压与线圈匝数成正比
  91. 31
  92. 00:01:15,268 --> 00:01:17,698
  93. 此时次级线圈的匝数更多
  94. 32
  95. 00:01:17,698 --> 00:01:19,878
  96. 那么输出的电压就会升高
  97. 33
  98. 00:01:19,878 --> 00:01:21,681
  99. 称为升压变压器
  100. 34
  101. 00:01:21,682 --> 00:01:24,612
  102. 反之如果是初级线圈的匝数更多
  103. 35
  104. 00:01:24,612 --> 00:01:26,612
  105. 那么输出的电压则变低
  106. 36
  107. 00:01:26,612 --> 00:01:27,415
  108. 称为降压变压器
  109. 37
  110. 00:01:28,016 --> 00:01:30,276
  111. 这就是变压器的基本原理
  112. 38
  113. 00:01:30,276 --> 00:01:34,456
  114. 根据结构形式不同 变压器可分为芯式和壳式两类
  115. 39
  116. 00:01:34,456 --> 00:01:37,556
  117. 我们所展示的是一台壳式降压变压器
  118. 40
  119. 00:01:37,556 --> 00:01:39,166
  120. 其结构较为特殊
  121. 41
  122. 00:01:39,166 --> 00:01:41,336
  123. 具备500kV的高压输入
  124. 42
  125. 00:01:41,336 --> 00:01:42,636
  126. 以及两个输出
  127. 43
  128. 00:01:42,636 --> 00:01:45,896
  129. 分别为220kV的中压主输出和10kV
  130. 44
  131. 00:01:45,896 --> 00:01:48,596
  132. 或35kV的辅助低压输出
  133. 45
  134. 00:01:48,596 --> 00:01:49,276
  135. 其中
  136. 46
  137. 00:01:49,276 --> 00:01:52,916
  138. 高压绕组与中压绕组共用部分线圈
  139. 47
  140. 00:01:52,916 --> 00:01:54,666
  141. 利用自耦降压技术
  142. 48
  143. 00:01:54,666 --> 00:01:57,016
  144. 通过改变中压侧抽头匝数实现主降压
  145. 49
  146. 00:01:57,016 --> 00:02:02,296
  147. 低压绕组则为单独的线圈 在共用铁芯的最里端
  148. 50
  149. 00:02:02,296 --> 00:02:03,776
  150. 在线圈绕制前
  151. 51
  152. 00:02:03,776 --> 00:02:05,886
  153. 需先对铁芯包裹一层绝缘片
  154. 52
  155. 00:02:05,886 --> 00:02:07,336
  156. 并套上绝缘筒
  157. 53
  158. 00:02:07,336 --> 00:02:10,356
  159. 以防止低压线圈与铁芯直接接触
  160. 54
  161. 00:02:10,356 --> 00:02:14,922
  162. 随后 依次绕上内层的低压线圈与外层的高中压线圈
  163. 55
  164. 00:02:14,922 --> 00:02:19,716
  165. 所有绕组均采用高导电率的铜制成 横截面为矩形
  166. 56
  167. 00:02:19,716 --> 00:02:22,656
  168. 矩形相比圆形的排布更加紧凑
  169. 57
  170. 00:02:22,656 --> 00:02:24,726
  171. 拥有更好的空间利用率
  172. 58
  173. 00:02:24,726 --> 00:02:27,542
  174. 同时有利于增加线径以降低电阻
  175. 59
  176. 00:02:27,542 --> 00:02:28,962
  177. 提高散热效率
  178. 60
  179. 00:02:28,963 --> 00:02:31,073
  180. 铜导线外包覆绝缘纸
  181. 61
  182. 00:02:31,073 --> 00:02:33,993
  183. 这种材料耐高温、绝缘性强且不易老化
  184. 62
  185. 00:02:33,650 --> 00:02:35,310
  186. 在这个三相系统中
  187. 63
  188. 00:02:35,310 --> 00:02:37,400
  189. 电流按顺序流通绕组
  190. 64
  191. 00:02:37,400 --> 00:02:41,703
  192. 每个绕组的电压波与其他电压波的相位相差120度
  193. 65
  194. 00:02:41,703 --> 00:02:45,410
  195. 他们接力输出从而产生连续稳定的电流
  196. 66
  197. 00:02:45,410 --> 00:02:50,310
  198. 在外层的高压、中压共用绕组上还会延伸出多个抽头
  199. 67
  200. 00:02:50,310 --> 00:02:52,960
  201. 其全部连接有载分接开关
  202. 68
  203. 00:02:52,977 --> 00:02:54,717
  204. 旁边的电机驱动装置可通过改变匝数的方式
  205. 69
  206. 00:02:54,717 --> 00:02:57,127
  207. 来调节输出的电压
  208. 70
  209. 00:02:57,184 --> 00:03:00,950
  210. 所有组件安装于密封油箱内部
  211. 71
  212. 00:03:00,950 --> 00:03:04,300
  213. 油箱顶部设有五个引出电流的绝缘套管
  214. 72
  215. 00:03:04,300 --> 00:03:08,740
  216. 分别为高压、中压、高压中性点及两个低压套管
  217. 73
  218. 00:03:08,744 --> 00:03:13,244
  219. 这些套管是绝缘结构 防止高压击穿油箱壳体
  220. 74
  221. 00:03:13,244 --> 00:03:15,764
  222. 油箱内部填充绝缘矿物油
  223. 75
  224. 00:03:15,764 --> 00:03:18,154
  225. 具备良好绝缘性和热稳定性
  226. 76
  227. 00:03:18,154 --> 00:03:19,984
  228. 可有效冷却内部绕组
  229. 77
  230. 00:03:19,984 --> 00:03:22,961
  231. 在油箱上方还设置了油枕
  232. 78
  233. 00:03:22,961 --> 00:03:24,981
  234. 用于储存备用绝缘油
  235. 79
  236. 00:03:24,981 --> 00:03:25,631
  237. 同时它还可以过滤湿气
  238. 80
  239. 00:03:25,631 --> 00:03:27,297
  240. 保证油质的纯度